B.Sc., **BOTANY** First Year, I-Semester Paper-I Microbial Diversity and Lower Plants

DSC - 1A (4 hrs./week) Credits- 4 **Theory Syllabus** (60 hours) UNIT-I (15 hours) 1) Bacteria: Structure, nutrition, reproduction and economic importance. Brief account of Archaebacteria, Actinomycetes and Mycoplasma with reference to little leaf of Brinjal and Papaya leaf curl 2) Viruses: Structure, replication and transmission; plant diseases caused by viruses and their control with reference to Tobacco Mosaic and Rice Tungro. 3) An outline of plant diseases of important crop plants caused by bacteria and their control with reference to Angular leaf spot of cotton and Bacterial blight of Rice. UNIT-II (15 hours) 1) General characters, structure, reproduction and classification of algae (Fritsch) reference to Oscillatoria, Nostoc and Anabaena. Chlorophyceae- Volvox, Oedogonium and Chara. Phaeophyceae- Ectocarpus Rhodophyceae- Polysiphonia. (15 hours) (a) Mastigimycotina- Albugo (b) Zygomycotina- Mucor (c) Ascomycotina- Saccharomyces and Penicillium. (d) Basidiomycotina- Puccinia (e) Deuteromycotina- Cercospora.

UNIT-IV

- 1) Bryophytes: Structure, reproduction, life cycle and systematic position of Marchantia, Anthoceros and Polytrichum, Evolution of Sporophyte in Bryophytes.
- 2) Pteridophytes: Structure, reproduction, life cycle and systematic position of Rhynia, Lycopodium, Equisetum and Marsilea.
- Stelar evolution, heterospory and seed habit in Pteridophytes.

--:000:--

Ceeper H.

1|Page

- 2) Cyanobacteria: General characters, cell structure their significance as biofertilizers with special
- Structure and reproduction of the following:

UNIT-III

- General characters and classification of fungi (Ainsworth).
- Structure and reproduction of the following:
- - 3) Economic importance of lichens

(15 hours)

- 1) Alexopolous, J. and W. M. Charles. 1988. Introduction to Mycology. Wiley Eastern, New Delhi.
- 2) Mckane, L. and K. Judy. 1996. Microbiology Essentials and Applications. McGraw Hill, New York.
- Pandey, B. P. 2001. College Botany, Vol. I: Algae, Fungi, Lichens, Bacteria, Viruses, Plant Pathology, Industrial Microbiology and Bryophyta. S. Chand & Company Ltd, New Delhi.
- Pandey, B. P. 2007. Botany for Degree Students: Diversity of Microbes, Cryptogams, Cell Biology and Genetics. S. Chand & Company Ltd, New Delhi.
- 5) Sambamurthy, A. V. S. S. 2006. A Textbook of Plant Pathology. I. K. International Pvt. Ltd., New Delhi.
- 6) Sambamurthy, A. V. S. S. 2006. A Textbook of Algae. I. K. International Pvt. Ltd., New Delhi.
- 7) Sharma, O. P. 1992. Textbook of Thallophyta. McGraw Hill Publishing Co., New Delhi.
- Thakur, A. K. and S. K. Bassi. 2008. A Textbook of Botany: Diversity of Microbes and Cryptogams. S. Chand & Company Ltd, New Delhi.
- Vashishta, B. R., A. K. Sinha and V. P. Singh. 2008. Botany for Degree Students: Algae. S. Chand& Company Ltd, New Delhi.

leceeeut for A

- 10) Vashishta, B. R. 1990. Botany for Degree Students: Fungi, S. Chand & Company Ltd, New Delhi.
- 11) Dutta A.C. 2016. Botany for Degree Students. Oxford University Press.
- 12) Watson, E. V. 1974. The structure and life of Bryophytes, B. I. Publications, New Delhi.
- Pandey, B. P. 2006. College Botany, Vol. II: Pteridophyta, Gymnosperms and Palcobotany. S. Chand & Company Ltd, New Delhi.
- Vashishta, P. C., A. K. Sinha and Anil Kumar. 2006. Botany Pteridophyta (Vascular Cryptogams). Chand & Company Ltd, New Delhi.
- 15) Pandey, B. P. 2001. College Botany, Vol. I: Algae, Fungi, Lichens, Bacteria, Viruses, Plant Pathology, Industrial Microbiology and Bryophyta. S. Chand & Company Ltd, New Delhi.
- Pandey, B. P. 2007. Botany for Degree Students: Diversity of Microbes, Cryptogams, Cell Biology and Genetics. S. Chand & Company Ltd, New Delhi.
- Thakur, A. K. and S. K. Bassi. 2008. A Textbook of Botany: Diversity of Microbes and Cryptogams. S. Chand & Company Ltd, New Delhi.
- Vashishta, B. R., A. K. Sinha and Adarsha Kumar. 2008. Botany for Degree Students: Bryophyta. S. Chand & Company Ltd, New Delhi.

(762

Sterio

Practical Syllabus

- 1. Study of viruses and bacteria using electron micrographs (photographs). 2. Gram staining of Bacteria.

3. Study of symptoms of plant diseases caused by viruses, bacteria, Mycoplasma and fungi: Bacteria: Angular leaf spot of cotton and Rice tungro.

Mycoplasma: Little leaf of Brinjal and Leaf curl of papaya

Fungi: White rust on Crucifers, Rust on wheat & Tikka disease of Groundnut. 4. Vegetative and reproductive structures of the following taxa: Algae: Oscillatoria, Nostoc, Volvox, Oedogonium, Chara, Ectocarpus and Polysiphonia.

Fungi: Albugo, Mucor, Saccharomyces, Penicillium, Puccinia and Cercospora 5. Section cutting of diseased material infected by Fungi and identification of pathogens as per theory syllabus. White rust of Crucifers, Rust on wheat & Tikka disease of Groundnut.

- 6. Lichens: Different types of thalli and their external morphology Examination of important microbial, fungal and algal products:
- Biofertilizers, protein capsules, antibiotics, mushrooms, Agar-agar etc. 8. Field visits to places of algal / microbial / fungal interest (e.g. Mushroom cultivation, water bodies).

9. Study of Morphology (vegetative and reproductive structures) and anatomy of the following Bryophytes: Marchantia, Anthoceros and Polytrichum.

- 10. Study of Morphology (vegetative and reproductive structures) and anatomy of the following Pteridophytes: Lycopodium, Equisetum and Marsilea.
- 11. Study of Anatomical features of Lycopodium stem, Equisetum stem and Marsilea petiole & rhizome by preparing double stained permanent mounts.

Practical Model Paper

- would would raper	Max. Marks: 25
1. Identify the given components 'A'&'B' in the algal mixture .	Time: 3 hrs
Describe with neat labeled diagrams & give reasons for the classifications. 2. Classify the given bacterial culture 'D' using Gram – staining technique. 3. Take a thin transverse section of given diseased material 'E'	2 X 2 = 4M 3M
Identify & describe the symptoms caused by the pathogen. 4. Identify the given specimens 'F', 'G' & 'H' by giving reasons . (Fungal-1, Bacteria-1 & Viral-1)	4M
5. Comment on the given slides 'I' & 'J' (Algae, I Funci 1)	$3 \times 1 = 3M$
 Identify the given specimen 'K' & slide 'L' (Bryophytes & Pteridophytes) Record 	$2 \times 2 = 4M$
7. Record	2 X 2 = 4M
Und ide stere	Fee 31 Page

B.Sc., BOTANY

First Year, II -Semester

Paper-II

Gymnosperms, Taxonomy of Angiosperms and Ecology

DSC-1B

Credits-4

Theory Syllabus

UNIT-I

- 1) Gymnosperms: General characters, structure, reproduction and classification (Sporne's). Distribution and economic importance of Gymnosperms.
- 2) Morphology of vegetative and reproductive parts, systematic position and life cycle of Pinus and Gnetum,
- 3) Geological time scale Introduction to Palaeobotany, Types of fossils and fossilization, Importance of fossils.

UNIT-II

- 1) Introduction: Principles of plant 4 ystematic, Types of classification: Artificial, Natural and Phylogenetic; Systems of classification: Salient features and comparative account of Bentham & Hooker and Engler & Prantl classification systems. An introduction to Angiosperm Phylogeny Group (APG).
- Current concepts in Angiosperm Taxonomy: Embryology in relation to taxonomy Cytotaxonomy, Chemotaxonomy and Numerical Taxonomy.
- Nomenclature and Taxonomic resources: An introduction to ICN, Shenzhen code a brief account. Herbarium: Concept, techniques and applications.
 (15 hours)

UNIT-III

- Systematic study and economic importance of plants belonging to the following families: Polypetalae Annonaceae, Capparidaceae, Rutaceae, Fabaceae (Faboideae/Papilionoideae, Caesalpinioideae, Mimosoideae), Cucurbitaceae
- 2) Gamopetalae: Apiaceae, Asteraceae, Asclepiadaceae, Lamiaceae, Monochalmydeae: Amaranthaceae, Euphorbiaceae
- 3) Monocotyledons: Orchidaceae, Poaceae and Zingeberaceae.

UNIT-IV

- 1. Component of eco system, energy flow, food chain and food webs.
- 2. Plants and environment, ecological adaptations of plants, Hydrophytes, Xerophytes and Mesophytes
- 3. Plant Succession serial stages, modification of environment, climax formation with reference to Hydrosere and Xerosere.

084 ap

--:000:--Shelles Alm

(15 hours)

(15 hours)

Practical Syllabus

- 1. Study of viruses and bacteria using electron micrographs (photographs).
- 2. Gram staining of Bacteria.
- 3. Study of symptoms of plant diseases caused by viruses, bacteria, Mycoplasma and fungi:
- Viruses: Tobacco mosaic
 - Bacteria: Angular leaf spot of cotton and Rice tungro.
 - Mycoplasma: Little leaf of Brinjal and Leaf curl of papaya
 - Fungi: White rust on Crucifers, Rust on wheat & Tikka disease of Groundnut.
 - 4. Vegetative and reproductive structures of the following taxa:
 - Algae: Oscillatoria, Nostoc, Volvox, Oedogonium, Chara, Ectocarpus and Polysiphonia.
- Fungi: Albugo, Mucor, Saccharomyces, Penicillium, Puccinia and Cercospora
- 5. Section cutting of diseased material infected by Fungi and identification of pathogens as per theory syllabus. White rust of Crucifers, Rust on wheat & Tikka disease of Groundnut.
- 6. Lichens: Different types of thalli and their external morphology
- Examination of important microbial, fungal and algal products: Biofertilizers, protein capsules, antibiotics, mushrooms, Agar-agar etc.
- 8. Field visits to places of algal / microbial / fungal interest (e.g. Mushroom cultivation, water bodies).
- 9. Study of Morphology (vegetative and reproductive structures) and anatomy of the following Bryophytes: Marchantia, Anthoceros and Polytrichum.
- 10. Study of Morphology (vegetative and reproductive structures) and anatomy of the following Pteridophytes: Lycopodium, Equisetum and Marsilea.
- 11. Study of Anatomical features of Lycopodium stem, Equisetum stem and Marsilea petiole & rhizome by preparing double stained permanent mounts.

Practical Model Paper	Max. Marks: 25
	Time ; 3 hrs
1. Identify the given components 'A'&'B' in the algal mixture.	
Describe with neat labeled diagrams & give reasons for the classifications.	2 X 2 = 4M
2. Classify the given bacterial culture 'D' using Gram – staining technique.	3M
3. Take a thin transverse section of given diseased material 'E'.	
Identify & describe the symptoms caused by the pathogen.	4M
4. Identify the given specimens 'F', 'G' & 'H' by giving reasons.	
(Fungal-1, Bacteria-1 & Viral-1)	3 X 1 = 3M
5. Comment on the given slides 'I' & 'J' (Algae-1, Fungi-1)	2'X 2 = 4M
6. Identify the given specimen 'K' & slide 'L' (Bryophytes & Pteridophytes)	2 X 2 = 4M
7. Record	3M
7. Record	3 P a g e
Stelles Recenth	

- 1. Watson, E. V. 1974. The structure and life of Bryophytes, B. I. Publications, New Delhi.
- Pandey, B. P. 2006. College Botany, Vol. II: Pteridophyta, Gymnosperms and Paleobotany.
 S. Chand & Company Ltd, New Delhi.
- 3. Sporne, K. R. 1965. Morphology of Gymnosperms. Hutchinson Co., Ltd., London.
- Vashishta, P. C., A. K. Sinha and Anil Kumar. 2006. Botany Pteridophyta (Vascular Cryptogams). Chand & Company Ltd, New Delhi.
- 5. Pandey, B. P. 2001. College Botany, Vol. I: Algae, Fungi, Lichens, Bacteria, Viruses, Plant Pathology, Industrial Microbiology and Bryophyta. S. Chand & Company Ltd, New Delhi.
- Pandey, B. P. 2007. Botany for Degree Students: Diversity of Microbes, Cryptogams, Cell Biology and Genetics. S. Chand & Company Ltd, New Delhi.
 - 7. Thakur, A. K. and S. K. Bassi. 2008. A Textbook of Botany: Diversity of Microbes and Cryptogams. S. Chand & Company Ltd, New Delhi.
 - Vashishta, B. R., A. K. Sinha and Adarsha Kumar. 2008. Botany for Degree Students: Bryophyta. S. Chand & Company Ltd, New Delhi.
- 9. Vashishta, P. C., A. K. Sinha and Anil Kumar. 2006. Botany for Degree Students: Gymnosperms. Chand & Company Ltd, New Delhi.
- 10. Dutta A.C. 2016. Botany for Degree Students. Oxford University Press.
- Pandey, B. P. 2007. Botany for Degree Students: Diversity of Seed Plants and their Systematics, Structure, Development and Reproduction in Flowering Plants. S. Chand & Company Ltd, New Delhi
- 12. Stace, C. A. 1989. Plant Taxonomy and Biostatistics (2nd Ed.). Edward Arnold, London.
- 13. Singh, G. 1999. Plant Systematics: Theory and Practice. Oxford and IBH, New Delhi.
- 14. Dutta A.C. 2016. Botany for Degree Students. Oxford University Press.
 - 15. Davis, P. H. and V. H. Heywood. 1963. Principles of Angiosperm Taxonomy. Oliver and Boyd, London.
 - 16. Heywood, V. H. 1965 . Plant Taxonomy. ELBS , London.
 - 17. Heywood, V. H. and D. M. Moore (Eds). 1984. Current Concepts in Plant Taxonomy. Academic Press, London.
- Jeffrey, C. 1982. An Introduction to Plant Taxonomy. Cambridge University Press, Cambridge. London.
 - 19. Michael, S. 1996, Ecology, Oxford University Press, London

Sheleso A.L.

- 20. Odum, E.P. 1983. Basics of Ecology, Saunder's International Students Edition, Philadelphia.
- 21. Sharma P.D. 1989. Elements of Ecology, Rastogi Publications, Meerut

052 Caseserthing

5|Page

Practical Syllabus

(45 hours)

- 1. Study of Morphology (vegetative and reproductive structures) of the following taxa: Gymnosperms - Pinus and Gnetum.
- 2. Study of Anatomical features of Pinus needle and Gnetum stem by preparing double stained permanent mounts.
- 3. Fossil forms using permanent slides / photographs: Cycadeoidea.
- Systematic study of locally available plants belonging to the families prescribed in theory Syllabus (Minimum of one plant representative for each family)
- 4. Study of morphological and anatomical characteristics of locally available plant species (Eichhorinia, Hydrilla, Pistia, Nymphaea, Asparagus, Opuntia, Euphorbia melii)
- 5. Demonstration of herbarium techniques.
- 6. Candidate has to submit at least 30 herbarium sheets.

Practical Model Paper	
Time : 3 hrs Max	. Marks: 🗐
1. Prepare a mount of the given material 'A ' (Hydrophytes /Xerophytes)	
Draw diagram & give reasons for identification.	817
2. Prepare a double stained permanent mount of the given material ' \mathbf{B} ' (Gymnosperms)	
Draw diagram & give reasons for identification.	1 00 /1
3. Identify the given specimens C & D (Gymnosperms /Xerophytes)	2 X 4 =🕅
4. Identify the given slides E&F (Gymnosperms /Xerophytes)	2 X 4 = 8 M
5. Technical description of the given plant twig 'A'	10M
6. Herbarium	311
7. Record	311
Sterie & reura af af Al	J.

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA Under Graduate Courses (Under CBCS 2020 – 2021 onwards) B.Sc. BOTANY II Year SEMESTER – III

PLANT ANATOMY AND EMBRYOLOGY

Theory:	4 Hours/Week;	Credits: 4	Marks: 100 (Internal: 20; External: 80)
Practical:	3 Hours/Week	Credits: 1	Marks: 25

UNIT – I

Meristems: Types, histological organization of shoot and root apices and theories.

- 1. Tissues and Tissue Systems: Simple, complex and special tissues.
- 2. Leaf: Ontogeny, diversity of internal structure; stomata and epidermal outgrowths.

UNIT –II

- 4. Stem and root anatomy: Vascular cambium Formation and function.
- 5. Anomalous secondary growth of Stem -*Achyranthes, Boerhaavia, Bignonia, Dracaena;* Root—*Beta vulgaris.*
- 6. Wood structure: General account. Study of local timbers Teak (*Tectona grandis*), Rosewood, (*Dalbergia latefolia*), Red sanders, (*Pterocarpus santalinus*) Nallamaddi (*Terminalia tomentosa*) and Neem (*Azadirachta indica*).

UNIT-III

- 7. History and importance of Embryology.
- 8. Another structure, Microsporogenesis and development of male gametophyte.
- 9. Ovule structure and types; Megasporogenesis; types and development of female gametophyte.

UNIT-IV

- 10. Pollen morphology, pollination and fertilization, Pollination Types, Pollen pistil interaction, Double fertilization.
- 11. Seed structure appendages and dispersal mechanisms.
- 12. Endosperm Development and types. Embryo development and types; Polyembryony and Apomixis -- an outline.

References:

- 1. Bhattacharya et. al. 2007. A textbook of Palynology, Central, New Delhi.
- 2. Bhojwani, S. S. and S. P. Bhatnagar. 2000. The Embryology of Angiosperms (4th Ed.), Vikas Publishing House, Delhi.
- 3. M.R.Saxena- A textbook of Palynology.
- 4. Vashista- A textbook of Anatomy.
- 5. P.K.K.Nair- A textbook of Palynology.
- 6. Esau, K. 1971. Anatomy of Seed Plants. John Wiley and Son, USA.
- 7. Johri, B. M. 1984. Embryology of Angiosperms. Springer-Verleg, Berlin.
- 8. Kapil, R. P. 1986. Pollination Biology. Inter India Publishers, New Delhi.
- 9. Maheswari, P. 1971. An Introduction to Embryology of Angiosperms. McGraw Hill Book Co., London.
- 10. Dutta A.C. 2016. Botany for Degree Students. Oxford University Press

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA Under Graduate Courses (Under CBCS 2020 – 2021 onwards) B.Sc. BOTANY II Year SEMESTER – III

PLANT ANATOMY AND EMBRYOLOGY PRACTICAL

- 1. Demonstration of double stain technique.
- 2. Preparation of double stained Permanent slides
 Primary structure: Root *Cicer, Canna;* Stem *Tridax, Sorghum*Secondary structure: Root *Tridax* sp.; Stem *Pongarnia*Anomalous secondary structure:
 Stem: Achyranthes, Boerhavia, Bignonia, Dracaena
 Root: Beta vulgaris
- 3. Stomatal types using epidermal peels (Dicots).
- 4. Structure of anther and microsporogenesis using permanent slides.
- 5. Structure of pollen grains using whole mounts Hibiscus, Acacia and Grass).
- 6. Pollen viability test using Evans Blue Hibiscus
- 7. Study of ovule types and developmental stages of embryo sac.
- 8. Structure of endosperm (nuclear and cellular); Developmental stages of dicot and monocot embryos using permanent slides.
- 9. Isolation and mounting of embryo (using Cymopsis / Senna / Crotalaria)

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA Under Graduate Courses (Under CBCS 2020–2021 onwards) B.Sc. BOTANY II Year SEMESTER – IV

CELL BIOLOGY AND PLANT PHYSIOLOGY

Theory:4 Hours/WeekCredits: 4Marks: 100 (Internal: 20; External: 80)Practical:3 Hours/WeekCredits: 1Marks: 25

UNIT I: Plant cell envelops: Ultra structure of cell wall, molecular organization of cell membranes.

- 1. Models of membrane structure, Functions, fluidity and Selective permeability of the membranes.
- 2. Cell Organelles: Structure and semiautonomous nature of Mitochondria and Chloroplast.
- 3. Structure and role of endoplamic reticulum, ribosomes, golgi complex, lysosomes, peroxisomes and glyoxisomes.

UNIT-II

Nucleus: Ultra structure, types and functions of DNA & RNA.

- 4. Chromosomes: Morphology, organization of DNA in a chromosome, Euchromatin and Heterochromatin, Karyotype. Special types of chromosomes: Lampbrush and Polytene chromosomes.
- 5. Extra nuclear genome: Mitochondrial DNA and Plastid DNA.. Plasmids.
- 8. Cell division: Cell and its regulation; mitosis, meiosis and their significance

UNIT-III

9. Plant -Water Relations: Physical properties of water, diffusion, imbibitions, osmosis; osmotic and pressure Potential, absorption and transport of water.

10. Mineral Nutrition: Essential macro and micro mineral nutrients, and symptoms of mineral deficiency.

11.Transpiration; Stomatal structure and movement. Mechanism of phloem transport. Mechanism of phloem transport.

12. Enzymes: Nomenclature, Characteristics, Classification and factors regulating enzyme activity.

UNIT-IV

- 13. Photosynthesis: Photosynthetic pigments, Mechanism of photosynthetic electron transport and evolution of oxygen, Photophosphorylation . Carbon assimilation pathways: C3, C4 and CAM.
- 14. Respiration: Aerobic and Anaerobic; Glycolysis, Krebs cycle and electron transport system.
- 15. Nitrogen Metabolism: Biological nitrogen fixation
- 16. Physiological effects of Phytohormones: Auxins, gibberellins, cytokinins, ABA, ethylene and Brassinosteroids

- 1. Sharma, A. K. and A. Sharma. 1999. Plant Chromosomes: Analysis, Manipulation and Engineering. Harward Academic Publishers, Australia.
- 2. Shukla, R. S. and P. S. Chandel. 2007. Cytogenetics, Evolution, Biostatistics and Plant Breeding. S.Chand & Company Ltd., New Delhi.
- Verma, P. S. and V. K. Agrawal. 2004. Cell Biology, Genetics, Molecular Biology, Evolution and Ecology. S. Chand & Company Ltd., New Delhi. 1. Hopkins, W. G. 1995.
- 4. Introduction to Plant Physiology. John Wiley & Sons Inc., New

York, USA

- 5. Jain, J.L., S. Jain and Nitin Jain. 2008. Fundamentals of Biochemistry. S. Chand & Company Ltd., New Delhi.
- 6. Pandey, B. P. 2007. Botany for Degree Students: Plant Physiology, Biochemistry, Biotechnology, Ecology and Utilization of Plants. S. Chand & Company Ltd., New Delhi.
- 7. Salisbury, F. B. and C. W. Ross. 1992. Plant Physiology. 4th edn. (India Edition), Wordsworth, Thomson Learning Inc.,USA.
- 8. Taiz, L. and E. Zeiger. 1998. Plant Physiology (2nd Ed.). Sinauer Associates, Inc., Publishers, Massachusetts, USA.
- 9. Dutta A.C. 2016. Botany for Degree Students. Oxford University Press.

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA Under Graduate Courses (Under CBCS 2020–2021 onwards) B.Sc. BOTANY II Year SEMESTER – IV

CELL BIOLOGY AND PLANT PHYSIOLOGY PRACTICAL

- 1. Demonstration of cytochemical methods: Fixation of plant material and nuclear staining for mitotic and meiotic studies.
- 2. Study of various stages of mitosis using cytological preparation of Onion root tips.
- 3. Study of various stages of meiosis using cytological preparation of onion flower buds.
- 4. Study of ultra structure of cell organelles using photographs. Chloroplast, Mitochondria, Nucleus, Ribosomes, Endoplasmic reticulum and Golgi complex.
- 5. Study of Special types of Chromosomes (Polytene chromosome and Lampbrush chromosomes-Permanent slide) ✓
- 6. Determination of osmotic potential of vacuolar sap by Plasmolytic method using leaves of *Rheodiscolor / Tradescantia*.
- 7. Determinion of rate of transpiration using Cobalt chloride method
- 8. Determination of stomatal frequency using leaf epidermal peelings / impressions
- 9. Determination of catalase activity using potato tubers by titration method
- 10. Separation of chloroplast pigments using paper chromatography technique
- 11. Estimation of protein by Biurette method
- 12. Mineral deficiency- Detail study of Micronutrients and Macro nutrients
- 13. Identification of C_3 , C_4 and CAM plants.

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA UNDER GRADUATE COURSES (UNDER CBCS 2021 – 2022 ONWARDS) B.SC. BOTANY III YEAR SEMESTER – V

PAPER – V: (A) BIODIVERSITY & CONSERVATION (DSE-1: ELECTIVE)

Theory:	4 Hours/Week;	Credits: 4 Marks: 100 (Internal: 20; External: 80)
Practical	3 Hours/Week	Credits: 1 Marks: 25

UNIT – I

- 1. Plant diversity and its scope: Genetic diversity, Species diversity, Plant diversity at the ecosystem level, Agro biodiversity and cultivated plant taxa, wild taxa.
- Values and uses of Biodiversity: Ethical and aesthetic values, Precautionary principle, Methodologies for valuation, Uses of plants, Uses of microbes.

UNIT-II

- 3. Loss of Biodiversity: Loss of genetic diversity, Loss of species diversity, Loss of ecosystem diversity, Loss of agro biodiversity, Projected scenario for biodiversity loss.
- 4. Management of Plant Biodiversity: Organizations associated with biodiversity, management- Methodology for execution-IUCN, UNEP, UNESCO, WWF, NBPGR.
- 5. Biodiversity legislation and conservation, Biodiversity information management and communication.

UNIT-III:

- 7. Conservation of Biodiversity: Conservation of genetic diversity, species diversityand
 ecosystem Diversity
- Principles of conservation : *In -situ* and *Ex-situ* conservation. Sacred groove, Botanical garden, Biosphere reserves, Sanctuaries, National parks (*In-situ*) and Tissue culture, Gene / seed / pollen banks and Cryopreservation (*Ex-situ*).

UNIT-IV:

- 9. Role of plants in relation to Human Welfare; Importance of forestry, their utilization and commercial aspects, Avenue trees, Ornamental plants of India.
- 10. Alcoholic beverages through ages. Fruits and nuts, Important fruit crops and their commercial importance. Wood and its uses.

Bralithay cour of

1. Krishnamurthy, K.V. (2004). An Advanced Text Book of Biodiversity - Principles and Practices. Oxford and IBH Publications Co. Pvt. Ltd. New Delhi

2. Bharucha, E. 2005. Textbook of Environmental Studies for Undergraduate Courses. Universities Press (India) Private Limited, Hyderabad.

3. Odum, E. P. 1983. Basics of Ecology. Saunder's International Students Edition, Philadelphia.

5

4. Sharma, P. D. 1989. Elements of Ecology. Rastogi Publications, Meerut.

paro snews of B. Calitta m

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA UNDER GRADUATE COURSES (UNDER CBCS 2021 – 2022 ONWARDS) B.SC. BOTANY III YEAR SEMESTER – V

PAPER – V:: (A) BIODIVERSITY & CONSERVATION PRACTICAL (DSE-1: ELECTIVE)

- 1. Study on local biodiversity: Herbs, shrubs and trees; Seasonal, Annual, biennial and perennial plants.
- 2. Study of morphological characteristics of plant communities: Hydrophytes (*Eichhornia*, *Hydrilla*, *Pistia*, *Nymphaea*, *Vallisneria*), Xerophytes: (*Asparagus*, *Opuntia*, *Euphorbia milii*, *Casuarina*, *Calotropis*).
- 3. Assessment of biodiversity
 - i) Avenue trees: Pongamiapinnata, Butea monosperma, Spathodea sp., Delonix regia, Jacaranda mimosifolia, Cassia fistula, Mimusopselengi, Acacia leucophloea, and Albizialebbeck.
 - ii) Ornamental Plants: Any five locally available ornamental plants.
 - iii) Timber Value: Acacianilotica, Tectonagrandisand Azardirachtaindica
 - iv) Fruits: Mangiferaindica(Mango), Ziziphusmauritiana, Psidium guajava(Guava), Annona squamosa
 - v) Nuts: Anacardiumoccidentale(Cashew), Terminalia catappa(Badam)
 - vi) Beverages: Madhucaindica, Camellia sinensis(Tea), Coffea arabica(Coffee), Borassusflabellifer

(Toddy palm) and Caryotaurens

Nam a

vii Medicinal value: Catharanthus roseus, Tinosporacordifoliaand Phyllanthus emblica, Ocimumsp., and Azardirachta indica

D. Calithan Seens

4. Field trip: Collection of plants from the field, identification and preparation of Herbarium.

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA Under Graduate Courses (Under CBCS 2021 – 2022 onwards) B.SC. BOTANY III YEAR SEMESTER – VI

PAPER-2B: TISSUE CULTURE AND BIOTECHNOLOGY (DSE-2: ELECTIVE)

Theory:	4 Hours/Week;	Credits: 4	Marks: 100 (Internal: 20; External: 80)
Practical:	3 Hours/Week	Credits: 1	Marks: 25

UNIT - I

- 1. Tissue culture: Introduction, sterilization procedures, explants, culture media- composition and preparation; Nutrients and hormone requirements. Micropropagation.
- 2. Organ culture: Totipotency, Induction of callus, Shoot, leaf culture, Anther culture, Ovule and Embryo culture.
- 3. Callus culture and isolation and fusion of protoplast culture
- 4 Organogenesis, Somatic and Zygotic embryogenesis

UNIT- II

- **5.** Applications of tissue culture: Production of pathogen free plants and stress resistant plants, somaclonal variants and synthetic seeds.
- 6. Induction of hairy roots and its applications in production of secondary metabolites.
- 7. Haploidy and triploids, Cryopreservation and Germplasm Conservation.
- 8 .Somatic hybrids and Cybrid

UNIT-III

- 9. Biotechnology: Introduction, history, scope and applications.
- 10. rDNA technology: Basic aspect of gene cloning, Enzymes used in gene cloning. Restriction enzymes, Ligases, Polymerases.
- Gene cloning: Recombinant DNA, Bacterial Transformation and selection of recombinant clones, vectors- cloning vehicles (Plasmid, Cosmids, Bacteriophages, & Phasmids; Eukaryotic Vectors (YAC) Gene Construct; Applications of rDNA technology.

UNIT - IV:

- 10. Gene Libraries: construction of genomic and cDNA libraries, Polymerase Chain Reaction (PCR) and its applications.
- Methods of gene transfer-Agrobacterium mediated Direct gene transfer by Electroporation, Microinjection, Microprojectile bombardment.

8alua B. Calillia IF . Nam D

12. Application of transgenics in improvement of crop productivity and quality traits. Pest resistant transgenic crops (Bt-cotton & Bt-brinjal); herbicide resistant plants (Roundup Ready soybean); crops with quality traits (Flavr Savr tomato, Golden rice).

References:

- 1. Balasubramanian, D., C. F. A. Bryce, K. Dharmalingam, J. Green and K. Jayaraman. 2004.
- 2. Biotechnology. Universities Press (India) Private Limited, Hyderabad.
- Channarayappa. 2007. Molecular Biotechnology Principles and Practices. Universities Press (India) Private Limited, Hyderabad.
- Chawala, H. S. 2002. Introduction to Plant Biotechnology. Oxford & IBH Publishing Company, New Delhi.
- 5. Dubey, R. C. 2001. A Textbook of Biotechnology. S. Chand & Company Ltd., New Delhi
- 6. Edmond, J. B., T. L. Senn, F. S. Adrews and R. J. Halfacre. 1977..
- Jha, T.B. and B. Ghosh. 2005. Plant Tissue Culture Basic and Applied. Universities Press (India). Private Limited, Hyderabad..
- 8. Ramawat, K. G. 2008. Plant Biotechnology. S. Chand & Company Ltd., New Delhi.
- Salisbury, F. B. and C. W. Ross. 1992. Plant Physiology. 4th edn. (India Edition), Wordsworth, Thomson Learning Inc., USA.
- Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science Amsterdam. The Netherlands.
- 12. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 13. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi. 5th edition.
- Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons, U.K.5th edition.
- 15. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.

Name Shewa B. Calilta 22

KAKATIYA UNIVERSITY - WARANGAL - TELANGANA Under Graduate Courses (Under CBCS 2021 – 2022 onwards) B.SC. BOTANY III YEAR SEMESTER – VI

PAPER-2B: TISSUE CULTURE AND BIOTECHNOLOGY PRACTICAL (DSE-2: ELECTIVE)

Major Experiments

1. Isolation of plant DNA (Tomato)

2. Production of synthetic seeds /Encapsulation of embryo

3. Preparation of plant tissue culture medium - MS medium

4. Isolation of protoplasts.

Minor Experiments

- 1. Callus induction
- 2. Demonstration of Micropropagation/multiple shoots
- 3. Anther culture
- 4. PCR Demonstration
- 5. Study of biotechnology products: Samples of antibiotics and vaccines
- 6. Photographs of Gene transfer methods.
- 7. Instruments used in Biotechnology lab- Autoclave, Laminar air flow, Hot air oven and Incubator.
- 8. Demonstration of *in vitro* sterilization and inoculation methods using leaf and nodal explants of tobacco, *Datura*, *Brassica* etc.

Spotting

- 1. Study of anther, embryo and endosperm culture, micropropagation, somatic embryogenesis & artificial seeds through photographs.
- 2. Study of methods of gene transfer through photographs: *Agrobacterium*-mediated, direct gene transfer by electroporation, microprojectile bombardment.
- 3. Study of steps of genetic engineering for production of Bt cotton, Golden rice, Flavr Savr tomato through photographs.
- 4. Restriction digestion and gel electrophoresis of plasmid DNA.

1000

B. Califerati Mary D

af